इंदिरा गांधी परमाणु अनुसंधान केंद्र, कल्पाक्कम

द्रुत रिएक्टर प्रौद्योगिकी के क्षेत्र में 51 वर्षों की यात्रा: एक झलक

स्थापना दिवस - 30 अप्रैल 2022

डॉ. बी. वेंकटरामन प्रतिष्ठित वैज्ञानिक एवं निदेशक

Dr. B. Venkatraman

Distinguished Scientist & Director

भारत सरकार परमाणु ऊर्जा विभाग इंदिरा गांधी परमाणु अनुसंधान केंद्र कल्पाक्कम– 603 102, तमिलनाडु, भारत Government of India Department of Atomic Energy Indira Gandhi Centre for Atomic Research Kalpakkam– 603 102, Tamil Nadu, India

निदेशक की कलम से...

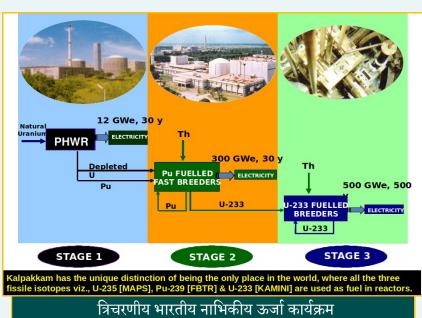
यह अत्यंत गौरव का अवसर है कि हम दिनांक 30 अप्रैल 2022 को इंदिरा गांधी परमाणु अनुसंधान केंद्र का स्थापना दिवस मना रहे हैं। इस केंद्र की स्थापना देश के त्रि-चरणीय नाभिकीय ऊर्जा कार्यक्रम के द्वितीय चरण, जो द्रुत प्रजनक रिएक्टर एवं संबंधित ईंधन-चक्र पर आधारित है, की दिशा में अनुसंधान एवं विकास के उद्देश्य से हुई थी।

यह केंद्र अपनी स्थापना से लेकर अब तक द्रुत प्रजनक रिएक्टर कार्यक्रम में अपनी भूमिका का सम्यक निर्वहन करता आ रहा है तथा केंद्र के वैज्ञानिकों, तकनीशियनों एवं अन्य कार्मिकों के अथक परिश्रम व दक्षतापूर्ण कार्यों के द्वारा अपनी गतिविधियों को निष्पादित कर रहा है।

केंद्र की वैज्ञानिक एवं तकनीकी गतिविधियों और उपलिब्धियों का राजभाषा हिंदी के माध्यम से प्रचार-प्रसार करने के उद्देश्य से हमारा प्रयास है कि हिंदी में प्रकाशित इस पुस्तिका के माध्यम से "द्रुत रिएक्टर प्रौद्योगिकी के क्षेत्र में 51 वर्षों की यात्रा की एक झलक" उपलब्ध हो सके।

मैं आशा करता हूँ कि स्थापना दिवस के अवसर पर प्रकाशित की जा रही यह पुस्तिका उपयोगी सिद्ध होगी।

श्भकामनाओं सहित ...


(डॉ. बी. वेंकटरामन)

द्रत रिएक्टर विकास: संक्षिप्त विवरण:

भारतीय परमाणु ऊर्जा कार्यक्रम के जनक एवं द्रष्टा डॉ. होमी जहांगीर भाभा ने नाभिकीय विज्ञान एवं प्रौद्योगिकी को मज़बूत आधार प्रदान किया। डॉ. भाभा ने अपनी दूरदर्शिता से एक त्रि-चरणीय परमाणु ऊर्जा कार्यक्रम की नीव रखी। उनका उद्देश्य देश को विद्युत ऊर्जा के क्षेत्र में आत्मिनर्भर बनाना था। देश में सीमित मात्रा में मौजूद यूरेनियम तथा दक्षिण भारत के तटीय क्षेत्रों के मोनाजाइट रेत में व्याप्त थोरियम भंडार के उपयोग से देश के

लिये दीर्घकालिक ऊर्जा सुरक्षा सुनिश्चित की जा सकती है। इस कार्यक्रम के प्रथम चरण में, प्राकृतिक यूरेनियम तथा स्वदेशी भारी पानी का उपयोग करके दाबित भारी पानी रिएक्टरों (पीएचडब्ल्यूआर) का निर्माण करना था। द्वितीय चरण में, पीएचडब्ल्यूआर में उत्पन्न प्लूटोनियम तथा ईंधन चक्र संपूर्ण करने पर उपलब्ध पुनर्नवीनीकृत ईंधन को काम में लेकर द्रुत प्रजनक रिएक्टरों (एफबीआर) का निर्माण करना शामिल है।

तृतीय चरण में, भारत में प्रचुर मात्रा में उपलब्ध थोरियम भंडार का इस्तेमाल करके प्रगत थोरियम रिएक्टरों (तापीय एवं द्रुत) का निर्माण करना है। तृतीय चरण के लिए आवश्यक विखंड्य पदार्थ प्लूटोनियम तथा यूरेनियम-233 पीएचडब्ल्यूआर तथा द्रुत प्रजनक रिएक्टरों से प्राप्त किए जाते हैं।

इसी कार्यक्रम के द्वितीय चरण को साकार करने के लिए सन् 1971 में इंदिरा गांधी परमाणु अनुसंधान केंद्र (इंगांपअकें) की स्थापना की गई। शुरू में इस केंद्र का नाम रिएक्टर अनुसंधान केंद्र (आर.आर.सी.) रखा गया था। तदोपरांत दिनांक 16 दिसंबर, 1985 को इसका नामकरण इंदिरा गाँधी परमाणु अनुसंधान केंद्र के रूप में किया गया।

इंगांपअकें का जन्म द्रुत प्रजनक परीक्षण रिएक्टर (FBTR) योजना को साकार बनाने के लिए हुआ जिससे कि देश में द्रुत प्रजनक रिएक्टर विज्ञान व प्रौद्योगिकी का विकास कर वाणिज्यिक स्तर पर नाभिकीय विद्युत ऊर्जा पैदा की जा सके। इस केंद्र की स्थापना में डॉ. विक्रम साराभाई ने अहम् भूमिका निभाई। तदोपरांत द्रुत रिएक्टर भौतिकी, सोडियम तकनीक पर आधारित रिएक्टर डिजाइन व इंजीनियरी, प्रगत पदार्थों की धातुकी व पदार्थ-विज्ञान, रेडियोधातुकी, रेडियोरासायनिकी, द्रुत रिएक्टर ईंधन पुनर्संसाधन, सुरक्षा एवं स्वास्थ्य भौतिकी आदि क्षेत्रों में विकास एवं अनुसंधान कार्य शुरू हुए। केंद्र में चल रहे रिएक्टर प्रौद्योगिकी, पदार्थ, रसायन, कंप्यूटर तथा मापयंत्रण इत्यादि कार्यक्रमों ने न केवल मौलिक विज्ञान को समृद्ध बनाया है, अपितु देश के सामरिक व प्रौद्योगिकी क्षेत्रों को भी मजबूत किया है तथा साथ ही केंद्र एवं विभाग के मिशन कार्यक्रमों की आवश्यकता को भी पूरा किया है।

इस केंद्र के प्रारंभिक दिनों में परमाणु ऊर्जा विभाग ने सीईए, फ्रांस के साथ रैपसोडी की तरह के द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) के निर्माण के लिए समझौते पर हस्ताक्षर किए। जिसमें द्रुत प्रजनक कोर में विखंडन ऊर्जा से भाप एवं बिजली उत्पादन करने का प्रावधान भी सिम्मिलत किया गया। इसके लिए फ्रेंच विशेषज्ञों के साथ अभिकल्पन कार्य शुरू किया गया। सन् 1974 में कल्पाक्कम में एफबीटीआर के अभिकल्प एवं कार्यान्वयन की रूप -रेखा तैयार हुई। पोखरण-1 परीक्षण के परिदृश्य में फ्रांस द्वारा सहयोग वापस लेने के उपरांत भारत ने द्रुत रिएक्टर कार्यक्रम जारी रखने के लिए Pu आधारित ईंधन को स्वयं विकसित करने की चुनौती को स्वीकार किया। इस ईंधन को संविरचित करने का उत्तरदायित्व बीएआरसी ने तथा ईंधन सब-असेंबली निर्माण की जिम्मेदारी को एनएफसी ने संभाला। इसके परिणामस्वरूप एफबीटीआर के लिए Pu-समृद्ध मिश्रित कार्बाइड ईंधन का संविरचन संभव हो सका।

केंद्र के वैज्ञानिकों के अथक प्रयास के फलस्वरूप अक्टूबर 1985 में एफबीटीआर ने प्रथम क्रांतिकता प्राप्त की। एफबीटीआर ने कई उपलिब्धयां हासिल की हैं। साथ ही अनेक समस्याओं जैसे एकदा पारगामी भाप जिनत्र

परिपथ में जल अशुद्धता, ईंधन प्रहस्तन घटना, जैव परिरक्षक में शीतलन जल रिसाव, अभिक्रियता बहिर्गमन, अल्प सोडियम रिसाव, भरण जल पंप में दोष आदि का समाधान भी मिला है।

कल्पाक्कम में प्रचालित द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) पिछले 36 वर्षों से द्रुत रिएक्टर संबंधी प्रौद्योगिकी विकास में सहायता दे रहा है। वर्ष 1985 में

10.5 MWt क्षमता वाले लघु कोर 22 मार्क-I ईंधन सब-असेंबली से शुरूआत की गई थी, जिसमें ईंधन रेखीय ताप रेटिंग एवं बर्न-अप के संबंध में मिश्रित कार्बाइड ईंधन के प्रदर्शन के आधार पर फ्रेश SAs को जोड़कर कई चरणों में पावर-स्तर को बढ़ाया गया। सितंबर 2002 में केंद्र ने स्वदेशी विकसित कार्बाइड ईंधन से 100 GWd/t (गीगावाट दिन प्रतिटन) बर्न अप स्तर अर्जित किया जो अंतरराष्ट्रीय स्तर की ऐतिहासिक घटना थी। बर्नअप स्तर को क्रमश: बढ़ाते हुए 165 GWd/t बर्नअप तक ले जाया गया।

एफबीटीआर में सोडियम पंपों को सफलतापूर्वक 120000 घंटे तक चलाया गया तथा सोडियम की शुद्धता सराहनीय रही। एफबीटीआर से अर्जित अनुभव तथा व्यापक बहुविषयी अनुसंधान एवं विकास के आधार ने केंद्र में द्रुत रिएक्टर प्रौद्योगिकी के अगले चरण प्रोटोटाइप द्रुत प्रजनक रिएक्टर (500 MWe) के निर्माण के लिए उत्साह और आत्मविश्वास दिलाया।

अब तक अपने प्रचालन के 36 वर्षों में, 29 किरणन अभियान सफलतापूर्वक संपन्न किये गये। दिनांक 07

मार्च 2022 को FBTR ने 40 MWt के निर्धारित पावर स्तर को प्राप्त कर लिया। इसके लिए प्रारंभिक कार्य अर्थात चार SG मॉड्यूल में से प्रत्येक में 3 ब्लैंक्ड ट्यूबों का सामान्यीकरण, मुख्य कूलिंग टावर का नवीनीकरण कार्य किया गया और उच्च रिएक्टर इनलेट तापमान पर आधारित नए रिएक्टर ट्रिप पैरामीटर को शामिल किया गया।

FBTR की विशेषताएं			
रिएक्टर प्रकार	सोडियम शीतित, लूप प्रकार		
रिएक्टर शक्ति	40MWt		
उच्चतम रेखीय ताप रेटिंग	400 W/cm (MK-I)		
उच्चतम बर्न अप	165 GWd/t		
शीर्ष न्यूट्रॉन अभिवाह	$3.15 E15 n/cm^2/s$		
नियंत्रण छड़ की संख्या	6		
नियंत्रण छड़ सामग्री	${ m B_4C}$ (${ m B^{10}}$ में 90% संवर्धित)		
रिएक्टर अंतर्गम सोडियम तापमान	380° C		
रिएक्टर निर्गम सोडियम तापमान	485° C		
प्राथमिक सोडियम प्रवाह	650m³/h		
भरण जल तापमान	190° C		
भाप तापमान	460° C		
भरण जल प्रवाह	30 t/h		
भाप दाब	125 kg/cm ²		
उपलब्ध सोडियम	150 t		
भाप जनित्र	एकदा पारगामी प्रकार, शेल में 7 ट्यूब, सर्पिला आकार		
टरबाइन जेनरेटर	16 चरण, संघनित प्रकार, 16.4 MWe शीतित वायु		
उपमार्ग परिपथ	100 % डम्प संघनित्र		

नाभिकीय ऊर्जा के तीसरे चरण में द्वितीय चरण से प्राप्त U-233 का Th-232 के साथ उपयोग करके एक प्रजनक रिएक्टर बनाने की व्यवस्था है। इसमें ऊर्जा उत्पादन के साथ-साथ Th-232 का U-233 में भी परिवर्तन होगा, जिससे एक दीर्घकालिक ऊर्जा स्त्रोत का सृजन भी होगा। इस दिशा में 30 KWt, U-233 ईंधन चालित अनुसंधान रिएक्टर "कल्पाक्कम मिनी

रिएक्टर" (कामिनी) का निर्माण किया गया। साथ ही तृतीय चरण के विभिन्न पहलुओं पर शोध एवं अनुसंधान कार्य

भी प्रगति पर हैं जिनके अंतर्गत न्यूट्रॉन रेडियोग्राफी, न्यूट्रॉन सक्रियण विश्लेषण आदि के लिए कामिनी का सफलतापूर्वक प्रचालन किया जा रहा है।

त्रि-चरणीय नाभिकीय ऊर्जा कार्यक्रम के विभिन्न चरणों में प्रयुक्त होने वाले ईंधन की विखंडन अभिक्रियाएं निम्नवत हैं:

प्रथम चरण:

द्वितीय चरण:

तृतीय चरण:

नाभिकीय ऊर्जा के उपर्युक्त वर्णित विभिन्न चरणों में से मुख्यत: द्वितीय एवं तृतीय चरणों के क्रियान्वयन हेतु इंदिरा गांधी परमाणु अनुसंधान केंद्र, कल्पाक्कम में अनेक वैज्ञानिक एवं तकनीकी अनुसंधान कार्य अनवरत जारी हैं जिनमें से पूर्व वर्णित एफबीटीआर के अलावा कुछ प्रमुख गतिविधियां निम्नानुसार है:

पुनर्संसाधन गतिविधियां :

द्वितीय चरण से प्राप्त भुक्त शेष ईंधन के पुनर्संसाधन हेत् लेड मिनी सेल की स्थापना की गई जिसका बाद में

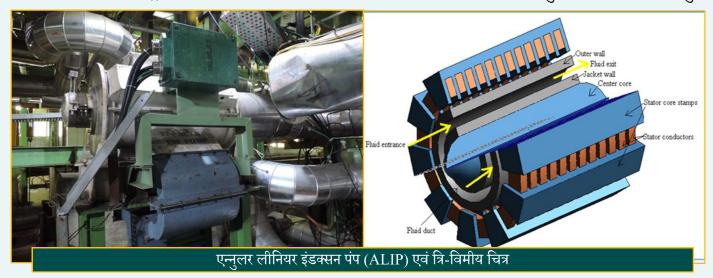
सुसंहत प्रगत ईंधन पुनर्संसाधन सुविधा (CORAL) के रूप में नामकरण किया गया। शुरुआत में इस सुविधा का उपयोग ग्राम स्तर पर किरणित ईंधन के पुनर्संसाधन के लिए किया गया और बाद में जब मिश्रित कार्बाइड ईंधन को एफबीटीआर के लिए प्रमुख ईंधन के रूप में चुना गया तब इसे बढ़ाकर किलोग्राम स्तर पर कर दिया गया। वर्तमान में 155 GWD/t बर्न अप के साथ FBTR भुक्त शेष ईंधन के निर्धारित पुनर्संसाधन अभियानों को पूरा किया गया है।

इसके उपरांत अगली चुनौती एफबीटीआर के ईंधन का निरंतर पुनर्संसाधन तथा पीएफबीआर के ईंधन को प्रयोगात्मक स्तर पर पुनर्संसाधित करना था। इस चुनौती को पूरा करने के लिए ईंधन पुनर्संसाधन संयंत्र (DFRP) का निर्माण प्रांरभ किया गया। प्रदर्शन द्रुत रिएक्टर ईंधन पुनर्संसाधन संयंत्र (DFRP) के हॉट-कमीशनन की दिशा में, विशेष प्रयोजन वाले दूरस्थ प्रहस्तन उपकरणों का डिज़ाइन, संविरचन एवं परीक्षण किया गया है। DFRP में प्रक्रिया उपकरण एवं विकिरण मॉनीटरन प्रणाली, सुरक्षा प्रणाली एवं विद्युत प्रणाली सफलतापूर्वक स्थापित किए गए हैं।

पदार्थ रसायन गतिविधियां:

नाभिकीय ऊर्जा के विकास में रसायन विज्ञान का महत्वपूर्ण योगदान है। नाभिकीय प्रौद्योगिकी के विभिन्न क्षेत्रों, जैसे नाभिकीय ईंधन चक्र, नए प्रक्रम और उत्पादों का विकास, ईंधन और सोडियम रसायन आदि में नई समझ विकसित करने में रसायन विज्ञान ने महत्वपूर्ण योगदान दिया है। इसके महत्व को समझते हुए IGCAR में विकिरण रसायन प्रयोगशाला की स्थापना की गई। इन गतिविधियों के अंतर्गत कल्पाक्कम के द्रुत रिएक्टर की आवश्यकताओं को पूरा करने के साथ-साथ नए शोध व विकास कार्यक्रम शुरू किए गए। इस सुविधा के अंतर्गत सोडियम में हाइड्रोजन, कार्बन और ऑक्सीजन की जांच के लिए कई वैद्युत-रसायन मीटर विकसित किए गए। इसके अतिरिक्त रासायनिक सेंसरों के कार्य को आगे बढ़ाते हुए कई सेंसर विकसित किए गए जिनमें आर्गन कवर गैस में हाइड्रोजन की जांच के लिए सेंसर, पॉलिमर आधारित इलेक्ट्रोलाइट सेंसर, लाइट काम्बेट एयरक्राफ्ट में ऑक्सीजन की जांच के लिए सेंसर, वातावरणीय जांच के लिए NO_x एवं H_2S सेंसर प्रमुख हैं।

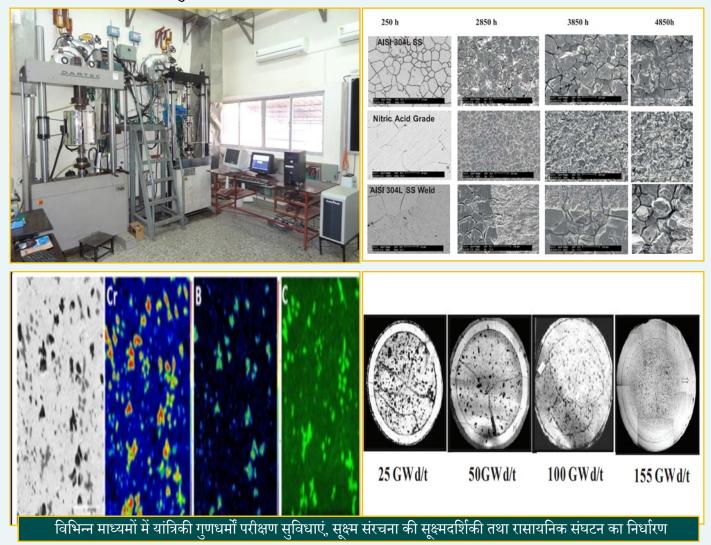
पाइरोप्रोसेस प्रौद्योगिकी विकास के लिए अनुसंधान एवं विकास हेतु एक सुविधा स्थापित की गई है। इसके अंतर्गत प्री-इंजीनियर्ड भवन शामिल है जिसमें उपयोगिताओं हेतु दो सिरों पर प्रतिवेशी प्लेटफार्म के साथ मुख्य प्रणालियों/उपकरणों को स्थापित किया गया है। कैथोड उत्पाद समेकन के लिए संरोधन बॉक्स (CB) के अंदर इलेक्ट्रोरिफाइनिंग हेतु उच्च तापमान इलेक्ट्रोरिफाइनर (HTER) और स्वचालित वैक्यूम डिस्टिलेशन एंड मेल्टिंग सिस्टम (AVDMS) स्थापित किए गए मुख्य प्रक्रम उपकरण हैं।


द्रुत रिएक्टर में प्रयुक्त होने वाले ईंधन प्लूटोनियम यौगिकों की उच्च ताप पर उनके रासायनिक गुणों का अध्ययन महत्वपूर्ण है। प्रयोगों द्वारा यह सिद्ध किया गया कि ईंधन और क्लेड में होने वाली रासायनिक क्रिया से उच्च बर्न-अप पर भी कोई खतरा नहीं है। कार्बाइड ईंधनों पर कई शोध-कार्य किए गए जिनमें तापीय चालकता, एन्थाल्पी, विलेयता और वाष्प दाब प्रमुख है।

रिएक्टर अभिकल्पन प्रौद्योगिकी संबंधी गतिविधियां:

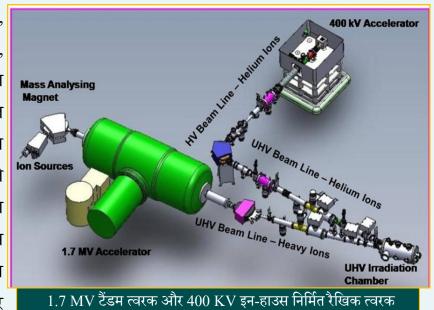
द्रुत रिएक्टर की संरचना, उसकी विभिन्न प्रक्रियाओं की विस्तृत रूपरेखा, सोडियम प्रौद्योगिकी विकास, रिएक्टर भौतिकी गणना आदि अनेक जटिल तकनीकी पहलु दीर्घकालिक अनुसंधान एवं शोघ के आधार पर ही सुगम बनाए जा सकते

रिएक्टर अभिकल्पन और प्रौद्योगिकी गतिविधियों के अंतर्गत द्रुत प्रजनक रिएक्टर (FBR) के डिजाइन, संरचनात्मक और थर्मल हाइड्रोलिक्स विश्लेषण, कोर संरक्षा एवं संयंत्र गतिशीलता विश्लेषण, भूकंपीय परीक्षण, विनिर्माण प्रौद्योगिकी विकास, इंजीनियिंग विकास, परीक्षण और योग्यता सिंहत संरचनात्मक यांत्रिकी सम्मलित हैं। इस केंद्र ने रिएक्टर भौतिकी एवं कोर इंजीनियिंग, रिएक्टर असेंबली, एब्जॉर्बर रॉड और सोडियम, प्राइमरी और सेकेंडरी सोडियम हीट ट्रांसपोर्ट सिस्टम, क्षय उष्मा निष्कासन प्रणाली, विभिन्न संयंत्र आनुषंगिक प्रणालियों, विद्युत


शक्ति प्रणाली, संयंत्र लेआउट, सोडियम में प्रयुक्त होने वाले वाले उपकरणों की प्रहस्तन प्रणाली, इलेक्ट्रोमैग्नेटिक पंप (एन्नुलर लीनियर इंडक्सन पंप), कोल्ड ट्रैप और अल्ट्रासोनिक उपकरणों के अभिकल्पन एवं विकास में विशेषज्ञता प्राप्त कर ली है।

धातुकर्म एवं पदार्थ विज्ञान गतिविधियां:

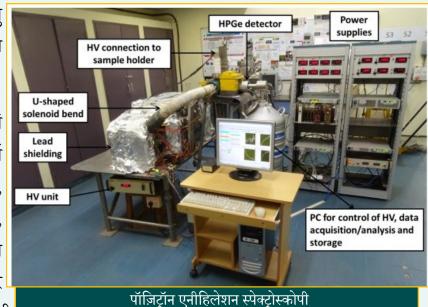
अयस्क से धातु विनिर्माण में विनिर्मित धातु में अनेक अन्य तत्व भी प्रविष्ट हो जाते हैं। इन अन्य तत्वों या अशुद्धियों के नकारात्मक एवं सकारात्मक दोनों ही प्रभाव होते हैं। बहुधा शुद्ध धातु की तुलना में मिश्रधातु का ही प्रयोग किया जाता है। इन मिश्रधातुओं की संरचना एवं संयोजन कैसे करना है, कितना करना है, किसका कितना प्रभाव होगा, इन्हीं जटिल प्रश्नों के उत्तर ढूंढने के लिए धातुकर्म एवं पदार्थ विज्ञान अनुसंधान शुरू किया गया। धातुकर्म और पदार्थ विज्ञान, द्रुत रिएक्टर कार्यक्रम में प्रयुक्त होने वाले घटक पदार्थों के स्वदेशी अभिकल्पन एवं संविरचन संबंधी अनुसंधान गतिविधियां को संपादित करते हैं। इस शोध गतिविधि के अंतर्गत पदार्थ संश्लेषण, संरचना, सूक्ष्म संरचना, गुणधर्म अभिलक्षणन, पदार्थ विनिर्माण, अंत:-रिएक्टर सेवा के तहत संक्षारण और अपघटन, विफलता विश्लेषण; गैर-विनाशकारी मूल्यांकन और गुणवत्ता आश्वासन निगरानी; पश्च-विकिरण परीक्षण आदि


सम्मिलत हैं। रिएक्टर में प्रयुक्त होने वाले पदार्थों पर शोध केंद्र में किया जा रहा है।

पदार्थ विज्ञान गतिविधियां:

पदार्थ विज्ञान अनुसंधान गतिविधि का उद्देश्य पदार्थों की संश्लेषण, अभिलक्षणन और उनके भौतिक गुणों

का विभिन्न परिस्थितियों यथा उच्च दाब, उच्च एवं निम्न ताप, उच्च चुंबकीय क्षेत्र, विकिरण प्रभाव, पतली फिल्म कोटिंग्स का विकास, अवस्था परिवर्तन आदि के अंतर्गत अध्ययन करना है। दोष और क्षति अध्ययन के अंतर्गत रिएक्टर में प्रयुक्त होने वाले संरचनात्मक पदार्थ में संभावित दोषों तथा दोष-अशुद्धता अंतःक्रियाओं का अध्ययन किया जाता है। आयन बीम विकिरण क्षति अध्ययन हेत् 1.7 MV टैंडम त्वरक और



400 KV इन-हाउस निर्मित रैखिक त्वरक का उपयोग करके पदार्थ में विकिरण प्रतिक्रिया का अध्ययन किया जाता है।

पॉज़िट्रॉन एनीहिलेशन स्पेक्ट्रोस्कोपी के माध्यम से ओपन वॉल्यूम दोष अध्ययन किया जाता है। विभिन्न प्रकार के सिमुलेशन और ab-initio कोड के साथ विस्तृत गणनाओं का उपयोग करके दोषों से संबंधित विभिन्न

प्रयोगात्मक परिणामों का विश्लेषण हेतु उच्च गति क्लस्टर कंप्यूटरों का व्यापक रूप से उपयोग किया जा रहा है।

भूतल और नैनोसाइंस गतिविधियां मोनोलिधिक और बहुस्तरीय पतली फिल्मों और नैनोस्ट्रक्चर के अध्ययन पर केंद्रित हैं, जिसमें माध्यमिक आयन मास स्पेक्ट्रोमेट्री, नैनोमेकेनिकल टेस्टिंग, फोकस्ड आयन बीम (FIB) आधारित नैनोस्ट्रक्चरिंग और नैनोपैटर्निंग, स्कैनिंग प्रोब माइक्रोस्कोपी

आधारित विभिन्न तकनीकों का उपयोग किया जाता है। संघनित पदार्थ भौतिकी में विभिन्न परिस्थितियों के तहत पदार्थ की संरचना और भौतिक गुणों की जांच की जाती है। लेजर हीटेड डायमंड एनविल सेल सुविधा द्वारा नए सुपरहार्ड पदार्थ के संश्लेषण संबंधी अनुसंधान किए जाते हैं। परीक्षणाधीन प्रणाली में नाभिकीय पदार्थ, अतिचालक,

कैडमियम जिंक टेलुराइड सिंगल क्रिस्टल पर आधारित गामा-संसूचक

मैग्नेटोकैलोरिक पदार्थ, टोपोलॉजिकल इंसुलेटर, मल्टीफ़ेरोइक, f इलेक्ट्रॉन आधारित इंटरमेटेलिक्स और ऑक्साइड, ग्लास और सुपर हार्ड ट्रांजिशन मेटल बोराइड शामिल हैं। सुपर कंडिक्टंग क्वांटम इंटरफेरेंस डिवाइस (SQUID) के अनुप्रयोग से मैग्नेटो-कार्डियोग्राफी (MCG) और मैग्नेटो-एनसेफैलोग्राफी (MEG) को नैदानिक अध्ययन के लिए सफलतापूर्वक डिजाइन, असेंबल और मानकीकृत किया गया है। इसके

लिए शोधकर्ताओं ने अत्यधिक प्रतिरोधी कैडिमयम जिंक टेलुराइड सिंगल क्रिस्टल विकसित किए हैं जिनका उपयोग गामा संसूचक डिटेक्टर विकसित करने में किया जा रहा है।

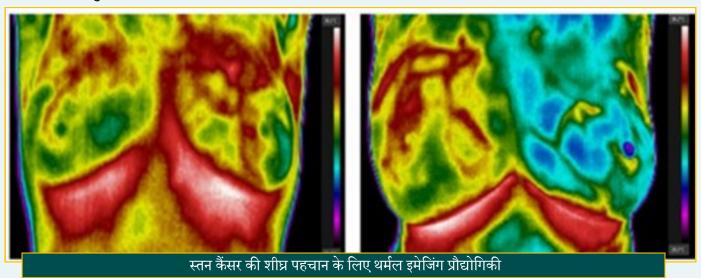
इलेक्ट्रॉनिक्स और इंस्ट्रमेंटेशन गतिविधियाँ:

इलेक्ट्रॉनिक्स और इंस्ट्रुमेंटेशन के क्षेत्र में, यह केंद्र कई उच्च स्तरीय गतिविधियां संचालित कर रहा है। प्रमुख गतिविधियां रिएक्टर और पुनर्संसाधन संयंत्रों के लिए इलेक्ट्रॉनिक उपकरण और नियंत्रण प्रणाली के डिजाइन और विकास पर केंद्रित हैं। इंस्ट्रूमेंटेशन और कंट्रोल सिस्टम के स्वदेशीकरण का कार्य भी शुरू किया गया है। केंद्र ने अपने स्वयं के उच्च निष्पादन कंप्यूटिंग सिस्टम, डेटा संचार सुविधाएं और वायरलेस सेंसर नेटवर्क तैनात किए हैं। एफबीआर के लिए एक ऑपरेटर प्रशिक्षण सिम्युलेटर तथा उन्नत दृश्य केंद्र भी विकसित किया गया है। इसके

अतिरिक्त परमाणु सुविधाओं के लिए अत्याधुनिक सुरक्षा प्रणालियाँ, सेंसर और उपकरण भी उपलब्ध कराए जा रहे हैं। केंद्र एक मजबूत ज्ञान प्रबंधन प्रणाली विकसित करने की दिशा में अग्रसर है।

स्वास्थ्य, संरक्षा व पर्यावरण संबंधी गतिविधियां:

रेडियोलॉजिकल सुरक्षा के क्षेत्र में, इस केंद्र में विभिन्न सिक्रय सुविधाओं के लिए प्रभावी और कुशल रेडियोलॉजिकल सुरक्षा और निगरानी प्रदान की जाती है। इलेक्ट्रॉन पैरामैग्नेटिक रेजोनेंस, थर्मल ल्यूमिनेसेंस और ऑप्टिकल स्टिम्युलेटेड सिहत भौतिक डोसिमेट्री तकनीकों पर आधारित एक रेट्रोस्पेक्टिव डोसिमेट्री प्रयोगशाला सफलतापूर्वक स्थापित की गई है। इलेक्ट्रॉनिक उपकरणों, चिप कार्ड, उंगली के नाखून और दांत के एनामेल्स का उपयोग करके खुराक के आकलन के लिए तरीके स्थापित किए गए हैं। पऊवि और अस्पतालों सिहत अन्य संगठनों के भीतर कई विकिरण निगरानी उपकरणों को नियमित रूप से अंशांकित किया जाता है। केंद्र में उपलब्ध BRIT गामा किरणक के उपयोग से गामा किरणन सेवाएं प्रदान जाती हैं। अनुकूलित प्रतिक्रिया और जीवाणु उपनिवेशों के अध्ययन हेतु पऊवि और तिमलनाडु कृषि विश्वविद्यालय (TNAU), वेल्लोर इंस्टीट्यूट ऑफ टेक्नोलॉजी, कैंसर इंस्टीट्यूट-अड्यार, किंग इंस्टीट्यूट-चेन्नई, MS रमैया विश्वविद्यालय आदि की विभिन्न इकाइयों से प्राप्त निष्कर्षक, पॉलिमर, विशिष्ट ग्लास, टीएलडी सामग्री, तार, एमनियन ग्राफ्ट के नमूने, गन्ने की कलियां, पपीता, तिल के बीज, नैनो कंपोजिट, जीवित मछलियां समेत कई नमूनों को किरणित किया जाता है। कल्पाक्कम में ऑनलाइन न्यूक्लियर इमरजेंसी रिस्पांस सिस्टम (ONERS) को परमाणु आपातकालीन परिस्थितियों के दौरान वास्तविक और ऑनलाइन इसरजेंसी रिस्पांस सिस्टम (ONERS) को परमाणु आपातकालीन परिस्थितियों के दौरान वास्तविक और ऑनलाइन



परिक्षेपण तथा विकिरण परिणामी मूल्यांकन हेतु टाइम-वैरींग सोर्स टर्म मॉड्यूल का विकास और संयोजन द्वारा उन्नत किया गया है।

प्रौद्योगिकी हस्तांतरण:

आत्मनिर्भर भारत अभियान के तहत मेक-इन-इंडिया को बढ़ावा देने के उद्देश्य से इंदिरा गांधी परमाणु अनुसंधान केंद्र द्वारा प्रौद्योगिकी के इन्क्यूबेशन और हस्तांतरण के क्षेत्र में महत्वपूर्ण कार्य किया जा रहा है तािक केंद्र में विकसित प्रौद्योगिकी का उपयोग चिकित्सा, उद्योग एवं अन्य समाजिक अनुप्रयोगों में व्यापक रूप से किया जा सके। साथ ही इन्हें स्टार्टअप, एमएसएमई एवं उद्योग जगत को हस्तांतिरत करने हेतु समझौता ज्ञापन भी किए जा रहे हैं। इसके तहत विकसित प्रौद्योगिकियों का संक्षिप्त विवरण निम्नानुसार है:

- अल्ट्रा सेंसिटिव-फ्लेक्सी रेंज पल्सेटिंग सेंसर आधारित चलाकता मीटर: इस प्रौद्योगिकी को इंगांपअकें द्वारा दिनांक 29 अप्रैल 2021 को मेसर्स सर्व एक्सएल एंटरप्राइजेज, बेंगलुरु को हस्तांतरित किया गया।
- पोर्टेबल हाई वॉल्यूम एयर सैम्पलर: इस प्रौद्योगिकी को इंगांपअकें द्वारा दिनांक 25 अगस्त 2021 को मेसर्स फर्स्ट सोर्स इम्पेक्स प्राइवेट लिमिटेड, बेंगल्रु को हस्तांतरित किया गया।
- ऑटोनॉमस गामा डोज लॉगर: इस प्रौद्योगिकी को दिनांक 06 दिसंबर 2021 को मैसर्स आइडियल सेंसर्स, चेन्नई को हस्तांतरित किया गया।
- स्तन कैंसर का शीघ्र पता लगाने के लिए थर्मल इमेजिंग तकनीक हेतु श्री रामचंद्र इंस्टीट्यूट ऑफ हायर एजुकेशन एंड रिसर्च (SRIHER) के साथ समझौता ज्ञापन किया गया।

• कृषि उत्पादों के शेल्फ आयु में वृद्धि, खाद्य संरक्षण में रेडियो आइसोटोप और विकिरण प्रौद्योगिकियों के अनुप्रयोग हेतु भारतीय कृषि अनुसंधान परिषद (आईसीएआर) के कृषि विज्ञान केंद्र, पेरम्बल्र के साथ समझौता ज्ञापन किया गया।

मानव संसाधन विकास गतिविधियां :

होमी भाभा राष्ट्रीय संस्थान (एचबीएनआई) की स्थापना पऊवि द्वारा सन् 2005 में की गई थी। यह विज्ञान, अभियांत्रिकी एवं गणित शास्त्रों में उत्कृष्टता के उद्यम को प्रोत्साहित करने के लक्ष्य के साथ पऊवि के ग्यारह संबद्ध

प्रमुख संस्थानों को एक साथ जोड़ता है, जिन्हें संघटक संस्थान (सीआई) / ऑफ कैंपस सेंटर (ओसीसी) कहा जाता है। अब तक इंगांपअकें के एचबीएनआई में लगभग 220 शोधार्थियों को पीएचडी की उपाधि प्रदान की गई है तथा लगभग 145 शोधार्थी विभिन्न विषयों में डॉक्टरेट कर रहे हैं। एचबीएनआई-आईजीसीएआर छात्रों को ऐसी शिक्षा प्रदान करता है जो उनकी क्षमताओं को प्रोत्साहित करे और उनमें

निहित सामर्थ्य को उजागर करे, जो उन्हें वैयक्तिक विकास, सार्थक आजीविका दिलाने और समाज के लिए बहुमूल्य नागरिक बनने का मार्ग प्रशस्त करे। इस संस्थान का प्रयास प्रतिभाओं को पोषित करने और उन्हें परिपक्व, कुशल एवं अत्यधिक उपयोगी अनुसंधान एवं विकास कर्मी के रूप में ढालने पर केंद्रित है। संस्था का आदर्श वाक्य "प्रासंगिकता के संग उत्कृष्टता एवं मानवीय दृष्टिकोण" है।

राजभाषा कार्यान्वयन संबंधी गतिविधियां:

केंद्र में संघ की राजभाषा नीति के अनुपालन हेतु नियमित रूप से कार्य जारी है। इसके अंतर्गत निदेशक, इंगांपअकें की अध्यक्षता में राजभाषा कार्यान्वयन समिति का विधिवत गठन, हिंदी भाषा, हिंदी टंकण, हिंदी आशुलिपि कक्षाओं के माध्यम से कर्मचारियों को प्रशिक्षण दिलाना, हिंदी कार्यशालाओं एवं हिंदी वैज्ञानिक संगोष्ठियों का नियमित आयोजन, हिंदी पखवाड़ा एवं विश्व हिंदी दिवस कार्यक्रम का आयोजन, नगर राजभाषा कार्यान्वयन समिति, चेन्नै में केंद्र की सिक्रय सहभागिता आदि शामिल है।

इस वर्ष केंद्र में राजभाषा कार्यान्वयन गतिविधियों के अंतर्गत विश्व हिंदी दिवस (10 जनवरी) के उपलक्ष्य में दिनांक 10 एवं 11 जनवरी, 2022 को "समाज-कल्याण में विकिरण एवं नाभिकीय प्रौद्योगिकी के अनुप्रयोग" विषय पर राष्ट्रीय हिंदी वैज्ञानिक वेब-संगोष्ठी (हाइब्रिड) आयोजित की गई। संगोष्ठी ऑनलाइन एवं ऑफलाइन दोनों माध्यमों से चलाया गया। इसके लिए देश भर में स्थित परमाणु ऊर्जा विभाग की इकाईयों, प्रमुख वैज्ञानिक एवं अनुसंधान संस्थानों, सार्वजनिक उपक्रमों के प्रतिष्ठानों, अखिल भारतीय शैक्षणिक संस्थानों आदि से प्रविष्ठियां मंगाई गई थी। प्राप्त 23 आलेखों की एक सारांश पुस्तिका एवं केंद्र की वार्षिक गृह पत्रिका "त्रिवेणी" के 17वें अंक का ई-संस्करण भी जारी किया गया। वेबिनार में ऑनलाइन एवं ऑफलाइन माध्यम से प्रमुख वार्ताकारों, आमंत्रित वक्ताओं, मौखिक प्रस्तुतकर्ता और प्रतिभागियों जुड़े।

केंद्र की महत्वपूर्ण उपलब्धियां:

वर्ष	उपलिब्धयां
1971	 रिएक्टर अनुसंधान केन्द्र (आरआरसी) की स्थापना
17/1	 द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) का सिविल निर्माण प्रारंभ
1972	• इंजीनियरी हॉल-I
1973	 केन्द्रीय अभिकल्पन कार्यालय (सीडीओ)
1975	• पुनर्संसाधन विकास प्रयोगशाला
-2,,0	• केन्द्रीय कर्मशाला
	• केन्द्रीय जल दुतशीतन संयंत्र
1976	• संरक्षा अनुसंधान प्रयोगशाला
19,0	• पदार्थ विज्ञान प्रयोगशाला
1977	• रेडियो धातुकी प्रयोगशाला
1978	• पदार्थ विकास प्रयोगशाला
1980	• रेडियो रसायन प्रयोगशाला
1982	• इलेक्ट्रॉनिकी एवं यंत्रीकरण प्रयोगशाला
	• कंप्यूटर केंद्र एवं प्रशासन भवन
1983	• स्वास्थ्य एवं संरक्षा प्रयोगशाला
1985	• परीक्षण रिएक्टर (एफबीटीआर) ने पहली क्रांतिकता प्राप्त की (अक्तूबर 1985)
	• आरआरसी का पुनर्नामकरण इंदिरा गांधी परमाणु अनुसंधान केन्द्र (इंगांपअकें) हुआ
1987	• द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) में निम्न ऊर्जा परीक्षण
1989	• U ²³³ पृथक्करण के लिए किरणित थोरियम छड़ों का पुनर्संसाधन
1990	• द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) का ऊर्जा स्तर बढ़ाकर 1 मेगावाट किया गया।
	• डीएई/एईसी को पीएफबीआर की विस्तृत रिपोर्ट प्रस्तुत की गई।
1991	• एफबीटीआर का ऊर्जा स्तर बढ़कर 8 मेगावाट (एलएचआर 250 डब्ल्यू/सेंमी) तक पहुँचा
	• तीन घटक ध्विन संसूचक और रेंजिंग (सोडार) प्रणाली अधिष्ठापित
	• द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) का 10.5 मेगावाट (एलएचआर 320 डब्ल्यू/सेंमी)
1002	पर सतत प्रचालन
1993	• कण किरणन सुविधा (पीआईएफ) और रेडियो रसायन हॉट सेल का प्रारम्भण
	• रेडियो धातुकर्म हॉट सेल का प्रारंभ
	 सोडियम में बड़े रिएक्टर घटकों के परीक्षण हेतु सुविधा का प्रारंभ
1004	 स्विवड, एएसआईसी और डायमंड एन्विल सेल विकसित
1994	
	• द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) में उच्च क्षमता भौतिकी और अभियांत्रिकी परीक्षण

1995	• प्रोटोटाइप द्रुत प्रजनक रिएक्टर (पीएफबीआर) के लिए दो लूप डिजाइन पर निर्णय
1996	• द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) ईंधन ने 25,000 मेगावाट टन प्रति दिन बर्न अप पार किया
	• कामिनी रिएक्टर क्रांतिकता
1997	 द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) टर्बो जिनत्र को दक्षिणी ग्रिड से जोड़ा गया कामिनी रिएक्टर को पूरी क्षमता पर चलाया गया
1998	 संरचनात्मक यांत्रिकी प्रयोगशाला की स्थापना। प्रौद्योगिकी विकास के लिए पीएफबीआर के मुख्य पात्र सेक्टर का संविरचन
1999	• जिरकोलॉय एवं Zr-Nb मिश्रधातुओं पर मंद विरूपण आंकडे के लिए द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) में किरणन प्रयोग
	• द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) ईंधन 50,000 मेगावाट टन प्रतिदिन बर्न अप
	 रोटर गतिक अध्ययनों के लिए सोडियम पम्प परीक्षण सुविधा
	• द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) के लिए अत्याधुनिक न्यूट्रॉनिक चैनल का कमीशनन
2000	• प्रोटोटाइप द्रुत प्रजनक रिएक्टर (पीएफबीआर) के बीओपी अभिकल्प के लिए परामर्शदाताओं की नियुक्ति
2001	• बोरॉन संवर्धन संयंत्र का प्रारंम्भण (अप्रैल, 2001)
	आन्तरिक पात्र खण्डों के विनिर्माण के लिए प्रौद्योगिकी विकास, एसजी वाष्पित्र, सीएसआरडीएम और डीएसआरडीएम
	 प्राथमिक सोडियम पम्प का द्रवचालित विकास
	• प्रोटोटाइप द्रुत प्रजनक रिएक्टर (पीएफबीआर) प्रशासनिक भवन की आधारशिला रखी गई
	• द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) ने बिना किसी ईंधन विफलता के 1,00,000 मेगावाट
	प्रतिदिन/टन बर्न अप प्राप्त कर एक बडी उपलब्धि हासिल की
	• 10 टी भूकंपी हल्लन/कंपन टेबल का प्रारम्भण
	• मानक मापन और अंशांकन सुविधा की स्थापना
2002	• गुणवत्ता अभियांत्रिकी सेवा और परीक्षण सुविधा की स्थापना
	• प्रोटोटाइप द्रुत प्रजनक रिएक्टर (पीएफबीआर) प्रशासनिक भवन का उद्घाटन
	• परीक्षण स्फोट और विजलन अध्ययनों के लिए स्थल उत्खनन
	• प्रोटोटाइप द्रुत प्रजनक रिएक्टर (पीएफबीआर) स्थल एसेंबली शॉप का निर्माण प्रारंभ
	• तरल हीलियम की शुरूआत प्रारंभ

2003	 भाप जिनत्र परीक्षण सुविधा का निर्माण दिवतीयक सोडियम पम्प का द्रवचालित परीक्षण प्रयोगशाला स्तर पर द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) कार्बाइड ईंधन के पुनर्संसाधन के लिए डेमो सुविधा लेड मीनि सेल (एलएमसी) प्रारंभ प्रोटोटाइप द्रुत प्रजनक रिएक्टर (पीएफबीआर) भाप जिनत्र वाष्पित्र के लिए प्रौद्योगिकी विकास पूरा किया गया उच्च शुद्धता (90%) तात्विक बोरॉन उत्पादन प्रोटोटाइप द्रुत प्रजनक रिएक्टर (पीएफबीआर) के निर्माण के लिए प्रशासनिक अनुमोदन और वित्तीय मंजूरी प्राप्त
	• पीएफबीआर के निर्माण के लिए नई कंपनी भाविनि का गठन
2004	 एफबीटीआर कार्बाइड ईंधन ने 123,000 मेगावाट टन प्रतिदिन बर्न अप प्राप्त िकया 1,00,000 मेगावाट टन प्रतिदिन िकरिणत एफबीटीआर कार्बाइड ईंधन का निरीक्षण पूरा िकया गया लेड मिनि सेल में एफबीटीआर से 25,000 मेगावाट टन प्रतिदिन िकरिणत ईंधन के पुनर्संसाधन के िलए सारकोप से अनुमित प्राप्त की गई। भाप जिनत्र परीक्षण सुविधा (एसजीटीएफ) का कमीशनन 25,000 MWd/t िकरिणत एफबीटीआर ईंधन िपनें लेड मिनि सेल में पुनर्संसाधित की गई।
2005	 सोडियम में डीएसआरडीएम का परीक्षण 50,000 MWd/t किरणित एफबीटीआर ईंधन पिनों का पुनर्संसाधन पूरा 12वें किरणन अभियान के समापन पर एफबीटीआर ईंधन ने 148,000 MWd/t का बर्न अप प्राप्त किया और पीएफबीआर परीक्षण सब-असेंबली ने 52,000 मेगावाट टन प्रतिदिन का बर्न अप प्राप्त किया 100,000 MWd/t किरणित द्रुत प्रजनक परीक्षण रिएक्टर (एफबीटीआर) ईंधन पिनों का पुनर्संसाधन सफलतापूर्वक पूरा किया, इसके साथ ईंधन चक्र को पूरा करने के लिए प्रौद्योगिकी प्रदर्शित
2006	 पीएफबीआर के लिए आवश्यक सभी प्रमुख घटकों के निर्माण के लिए प्रौद्योगिकी विकास पूर्ण। कठोर परीक्षण के बाद सीएसआरडीएम, पीएफबीआर के लिए उपयुक्त सिद्ध हुई। इंगाँपअकें में बीएआरसी ट्रेनिंग स्कूल की शुरूआत
2007	 एफबीटीआर ईंधन, सफलतापूर्वक155 GWd/t के शीर्ष बर्नअप तक पहुंचा विनिर्माण प्रौद्योगिकी के रूप में, दो वलयाकार ट्रेक पर प्रिड प्लेट की हार्ड फेसिंग की गई एसजीटीएफ पूर्ण पावर पर संचालित (5.5 MWt)

2008	 500 MWe प्रोटोटाइप फास्ट ब्रीडर रिएक्टर के मिश्रित ऑक्साइड परीक्षण ईंधन ने एफबीटीआर में लगभग 80 GWd/t का बर्नअप हासिल किया विश्व में पहली बार 155 GWd/t बर्नअप एफबीटीआर ईंधन का पुनर्संसाधन सफलतापूर्वक किया गया
2009	 पीएफबीआर के साधना लूप में क्षय ऊर्जा निष्कासन का प्रदर्शन एफबीटीआर, 55 सबअसेम्बिलयों के साथ अधिकतम 18.6 MWt विद्युत स्तर पर 1723 घंटों के लिए संचालित एफबीआर नियंत्रण छड़ों के विकास के लिए आवश्यक 90% बोरॉन समृद्धिकरण
2010	 एफबीटीआर का पच्चीस वर्षों तक सफल प्रचालन एसजीटीएफ में 5.5 MWt के पीएफबीआर मॉडल स्टीम जेनरेटर का परीक्षण एवं सतत प्रचालन
2011	 मिनी सोडियम प्रायोगिक सुविधा (मीना) की स्थापना अंतरिम फ्यूल स्टोरेज बिल्डिंग की कमीशनिंग सोडियम बांडेड ईंधन पिनों का संविरचन व एफबीटीआर में किरणन परीक्षण शुरू रेडियोमेटलर्जी प्रयोगशाला के हॉट सेलों में उच्च बर्न-अप ऑक्साइड ईंधन का पहला पश्च किरणन परीक्षण
2013	 इंडियन रेड्यूस्ड एक्टिवेशन फ़ारिटिक मार्टेंसिटिक स्टील का विकास एफएबीटीआर के मार्क-I मिश्रित कार्बाइड ईंधन के सॉलिडस तापमान का प्रायोगिक निर्धारण द्रुत रिएक्टर ईंधन चक्र सुविधा परियोजना के लिए निर्माण मंजूरी और वित्तीय स्वीकृति
2014	 एफबीटीआर के 22वें और 23वें किरणन अभियान का समापन कामिनी में पीएफबीआर के उच्च तापमान विखंडन कक्षों का परीक्षण
2015	 एफबीटीआर का 24वां किरणन अभियान देश में अपनी तरह की पहली 100 टन बहु-अक्षीय कंपन टेबल का कमीशनन। RISHI लूप का कमीशनन क्लैड ट्यूबों के गुब्बारों का व्यवहार परीक्षण हेतु RABITS (ट्यूब्स में संविदारन एवं बैलूनिंग) का कमीशनन।
2016	 अत्याधुनिक स्वदेशी रोबोटिक उपकरण के उपयोग से सभी आठ पीएफबीआर भाप जिनत्रों का सेवा -पूर्व ट्यूब निरीक्षण अभियांत्रिकी हॉल- IV में 5/8 वाटर-मॉडल परीक्षण सुविधा का कमीशनन 1.7 MeV टैंडेट्रॉन त्वरक का कमीशनन स्वदेशी पूर्ण स्वचालित वेस्ट एस्से कंप्यूटेड टोमोग्राफी (WACT) नेस्टेड अभिकल्प प्रणाली का विकास

2017	•	एफबीटीआर, अपने 25वें अभियान के दौरान 27.3 मेगावॉट के अपने उच्चतम विद्युत स्तर पर पहुंचा।
2018	•	कोरल में चौदह भुक्त ईंधन सब-असेंबली के पुनःप्रक्रमण को पूरा करना। क्रोड संरचनात्मक अनुप्रयोग हेतु उच्च क्रोमियम ऑक्साइड मजबूत परिक्षेपण (ओडीएस) फेरिटिक स्टील का विकास। दिक्षण भारत स्थित विभिन्न पऊवि सुविधाओं के गामा निगरानी उपकरणों के लिए अंशांकन आवश्यकताओं की जरूरतों को पूरा करने हेतु एक क्षेत्रीय अंशांकन सुविधा (आरसीएफ) की स्थापना की गई।
2019	•	27वें और 28वें विकिरण अभियानों के दौरान 32MWt पर एफबीटीआर का प्रचालन। एफबीटीआर टर्बो जनरेटर ग्रिड के साथ जोड़ा गया और 7 मेगावॉट का विद्युत उत्पादन किया गया पीएफबीआर एवं ईसीआईएल के अनेक न्यूट्रॉन संसूचकों की, न्यूट्रॉन रेडियोग्राफी के लिए 30 MWt तक कामिनी का प्रचालन।
2020	•	एफबीटीआर की आप्लावन प्रणाली में स्थिर सोडियम का शुद्धिकरण डीएफआरपी में, स्टैक एफ्लुएंट के लिए विकिरण निगरानी प्रणाली शुरू की गई। बाइनरी मेटल अलॉय फ्यूल स्लग के निर्माण के लिए इंजेक्शन कास्टिंग सिस्टम का कमीशनन। डॉ होमी जहांगीर भाभा की 111वीं जयंती पर 30 अक्टूबर 2020 को अध्यक्ष, एईसी और सचिव, पऊवि द्वारा नवाचार केंद्र, इंगांपअकें का उद्घाटन।
2021	•	केंद्र में विकसित $Cd_{0.9}Zn_{0.1}Te$ (CZT) के एकल क्रिस्टलों का उपयोग करके गामा विकरण संसूचक का अभिकल्पन एवं निर्माण किया गया। इस संसूचक के माध्यम से Ba-133 एवं Am-241 के फोटो पीक को सफलतापूर्वक विभेदित किया गया।
2022	•	दिनांक 07.03.2022 को एफबीटीआर ने 40 MWt का अभिकल्प शक्ति स्तर प्राप्त किया।

- 1. मुख पृष्ठ : एफबीटीआर भवन का दृश्य
- 2. पश्च पृष्ठ: डीएफआरपी का अवलोकन करते हुए डॉ. अनिल काकोडकर, कुलपित, एचबीएनआई हिंदी वैज्ञानिक संगोष्ठी का दृश्य

संकल्पना

डॉ. बी. वेंकटरामन

प्रतिष्ठित वैज्ञानिक एवं निदेशक, इंगांपअकें अध्यक्ष, राभाकास, इंगांपअकें

परामर्श एवं मार्गदर्शन

डॉ. बी.के. नशीने

निदेशक, ईएसजी एवं वैकल्पिक अध्यक्ष, राभाकास, इंगांपअकें

श्री के.आर. सेतुरामन

मुख्य प्रशासनिक अधिकारी सह अध्यक्ष, राभाकास, इंगांपअकें

श्रीमती राधिका साई कण्णन

उप लेखा नियंत्रक, इंगांपअकें

लेआउट एवं पृष्ठ डिज़ाइन

श्री जितेन्द्र कुमार गुप्ता प्रवर श्रेणी लिपिक, इंगांपअकें

<u>छायाचित्र</u>

एसआईआरडी, इंगांपअकें

संपादन मंडल

डॉ. अवधेश मणि

वैज्ञानिक अधिकारी/एच, इंगांपअकें

डॉ. (श्रीमती) वाणी शंकर

वैज्ञानिक अधिकारी/जी, इंगांपअकें

श्री प्रशांत शर्मा

वैज्ञानिक अधिकारी/जी, इंगांपअकें

श्री नरेन्द्र कुमार कुशवाहा

वैज्ञानिक अधिकारी/जी, इंगांपअकें

श्री प्रभात कुमार शर्मा

उप निदेशक (राजभाषा), इंगांपअकें

संपादन सहयोग

श्री सुकांत सुमन

कनिष्ठ अनुवाद अधिकारी, इंगांपअकें

श्री जितेन्द्र कुमार गुप्ता

प्रवर श्रेणी लिपिक, इंगांपअकें

संपर्क सुत्र

उप निदेशक (राजभाषा)

हिंदी अनुभाग इंदिरा गांधी परमाणु अनुसंधान केंद्र कल्पाक्कम-603102 जिला– चेंगलपट्टू, तमिलनाडु दूरभाष– 044– 27480500-22748/22829 ईमेल– ddol@igcar.gov.in

